Application of the derivative for proving identities, inequalities and solving equations

Aim: Broadening students' knowledge about the potential of first and second derivative of a function


Application: Proving some types of identities and inequalities as well as solving equations


Presentation structure:
Proving identities using a derivative

1  Proving identities using derivatives

The basic theorem

Theorem 1.1. If a function tema7_EN_files\tema7_EN_MathML_0.jpg is defined and differentiable in the interval tema7_EN_files\tema7_EN_MathML_1.jpg and for every tema7_EN_files\tema7_EN_MathML_2.jpg, then tema7_EN_files\tema7_EN_MathML_3.jpg is a constant in tema7_EN_files\tema7_EN_MathML_4.jpg.

Corollary 1.2. If differentiable in the interval tema7_EN_files\tema7_EN_MathML_5.jpg functions tema7_EN_files\tema7_EN_MathML_6.jpg and tema7_EN_files\tema7_EN_MathML_7.jpg have equal derivatives everywhere in tema7_EN_files\tema7_EN_MathML_8.jpg, then they differ with a constant, i.e. if tema7_EN_files\tema7_EN_MathML_9.jpg, for every tema7_EN_files\tema7_EN_MathML_10.jpg, then tema7_EN_files\tema7_EN_MathML_11.jpg, tema7_EN_files\tema7_EN_MathML_12.jpg- a constant.

We take on trust the truthfulness of the theorem above.

Identity

Definition 1.3. Two expressions tema7_EN_files\tema7_EN_MathML_13.jpg and tema7_EN_files\tema7_EN_MathML_14.jpg (rational or irrational) are called identical in a given set tema7_EN_files\tema7_EN_MathML_15.jpg, in which tema7_EN_files\tema7_EN_MathML_16.jpg and tema7_EN_files\tema7_EN_MathML_17.jpg are defined if for all values of variables from tema7_EN_files\tema7_EN_MathML_18.jpg their numerical values are equal. Then the equality tema7_EN_files\tema7_EN_MathML_19.jpg is called identity. Usually for tema7_EN_files\tema7_EN_MathML_20.jpg is used the set of admissible values of the equality tema7_EN_files\tema7_EN_MathML_21.jpg.

There are several ways to prove that the equality tema7_EN_files\tema7_EN_MathML_22.jpg is identical with the given set tema7_EN_files\tema7_EN_MathML_23.jpg:

  1. If the expression tema7_EN_files\tema7_EN_MathML_24.jpg is more complex it is transformed into an identical expression tema7_EN_files\tema7_EN_MathML_25.jpg (in the set tema7_EN_files\tema7_EN_MathML_26.jpg), after that tema7_EN_files\tema7_EN_MathML_27.jpg- in an identical to it tema7_EN_files\tema7_EN_MathML_28.jpg and so on until after a finite number of transformations ( for example tema7_EN_files\tema7_EN_MathML_29.jpg) the expression tema7_EN_files\tema7_EN_MathML_30.jpg is identical to tema7_EN_files\tema7_EN_MathML_31.jpg, i.e. tema7_EN_files\tema7_EN_MathML_32.jpg. This leads to the conclusion tema7_EN_files\tema7_EN_MathML_33.jpg
  2. The difference tema7_EN_files\tema7_EN_MathML_34.jpg is transformed into an identical to it expression tema7_EN_files\tema7_EN_MathML_35.jpg, then tema7_EN_files\tema7_EN_MathML_36.jpg into an identical to it expression tema7_EN_files\tema7_EN_MathML_37.jpgand so on until it is proven that tema7_EN_files\tema7_EN_MathML_38.jpg is identically equal to zero, i.e. tema7_EN_files\tema7_EN_MathML_39.jpg. From here tema7_EN_files\tema7_EN_MathML_40.jpg, i.e. tema7_EN_files\tema7_EN_MathML_41.jpg.
  3. The expressions tema7_EN_files\tema7_EN_MathML_42.jpg and tema7_EN_files\tema7_EN_MathML_43.jpg are simultaneously transformed into respective identical tema7_EN_files\tema7_EN_MathML_44.jpg and tema7_EN_files\tema7_EN_MathML_45.jpg. Further on tema7_EN_files\tema7_EN_MathML_46.jpg and tema7_EN_files\tema7_EN_MathML_47.jpg into tema7_EN_files\tema7_EN_MathML_48.jpg and tema7_EN_files\tema7_EN_MathML_49.jpg and so on until tema7_EN_files\tema7_EN_MathML_50.jpg and tema7_EN_files\tema7_EN_MathML_51.jpg become apparently equal i.e. tema7_EN_files\tema7_EN_MathML_52.jpg.

Of bigger interest to us is the second method. There are cases when using traditional means (from elementary mathematics) it is hard or impossible to directly prove that tema7_EN_files\tema7_EN_MathML_53.jpg. But it is possible (by means of a special technique) to show first that tema7_EN_files\tema7_EN_MathML_54.jpg, and then that this tema7_EN_files\tema7_EN_MathML_55.jpg is equal to zero.

Algorithm

When proving identities of the kind tema7_EN_files\tema7_EN_MathML_56.jpgwe implement the following algorithm:

  1. We consider the functiontema7_EN_files\tema7_EN_MathML_57.jpgwhere tema7_EN_files\tema7_EN_MathML_58.jpg are parameters.
  2. We prove that tema7_EN_files\tema7_EN_MathML_59.jpg for every admissible value of tema7_EN_files\tema7_EN_MathML_60.jpg.
  3. We determine that tema7_EN_files\tema7_EN_MathML_61.jpg where tema7_EN_files\tema7_EN_MathML_62.jpg is a randomly chosen number from the admissible values of tema7_EN_files\tema7_EN_MathML_63.jpg.
  4. On the basis of theorem 1.1 we conclude that tema7_EN_files\tema7_EN_MathML_64.jpg for every admissible tema7_EN_files\tema7_EN_MathML_65.jpg. Consequentlytema7_EN_files\tema7_EN_MathML_66.jpg.

1.1  Proving algebra identities

Example 1.4. Prove the identitytema7_EN_files\tema7_EN_MathML_67.jpgfor every xq a is a constant.

Solution: Let tema7_EN_files\tema7_EN_MathML_68.jpg.

tema7_EN_files\tema7_EN_MathML_69.jpg

tema7_EN_files\tema7_EN_MathML_70.jpg

tema7_EN_files\tema7_EN_MathML_71.jpg. When tema7_EN_files\tema7_EN_MathML_72.jpg, tema7_EN_files\tema7_EN_MathML_73.jpg

tema7_EN_files\tema7_EN_MathML_74.jpg.

Example 1.5. Prove the identity tema7_EN_files\tema7_EN_MathML_75.jpgfor every x, y.

Solution: Let tema7_EN_files\tema7_EN_MathML_76.jpg.

tema7_EN_files\tema7_EN_MathML_77.jpg

tema7_EN_files\tema7_EN_MathML_78.jpg

tema7_EN_files\tema7_EN_MathML_79.jpg.

When tema7_EN_files\tema7_EN_MathML_80.jpg. Consequently tema7_EN_files\tema7_EN_MathML_81.jpg.

Example 1.6. Prove the identity tema7_EN_files\tema7_EN_MathML_82.jpg for every x, y, z.

Solution:

tema7_EN_files\tema7_EN_MathML_83.jpg

tema7_EN_files\tema7_EN_MathML_84.jpg

tema7_EN_files\tema7_EN_MathML_85.jpg tema7_EN_files\tema7_EN_MathML_86.jpg

tema7_EN_files\tema7_EN_MathML_87.jpg

It is apparent that for most of these problems using derivatives leads to lowering of exponents of the expressions and so eases calculations.
The basic theorem can be used for proving the following identities.

Example 1.7.  tema7_EN_files\tema7_EN_MathML_88.jpg, if tema7_EN_files\tema7_EN_MathML_89.jpg

This problem represents a conditional identity which is a corollary of Example 1.6. In this case we offer a different solution.

Solution: From tema7_EN_files\tema7_EN_MathML_90.jpg. Considering the function

tema7_EN_files\tema7_EN_MathML_91.jpg
tema7_EN_files\tema7_EN_MathML_92.jpg

Consequently tema7_EN_files\tema7_EN_MathML_93.jpg. When tema7_EN_files\tema7_EN_MathML_94.jpg if tema7_EN_files\tema7_EN_MathML_95.jpg.

Example 1.8. Prove the identity tema7_EN_files\tema7_EN_MathML_96.jpg for every a, b, c.

Solution: Let tema7_EN_files\tema7_EN_MathML_97.jpg

tema7_EN_files\tema7_EN_MathML_98.jpg

Consequently tema7_EN_files\tema7_EN_MathML_99.jpg. When tema7_EN_files\tema7_EN_MathML_100.jpg.

Example 1.9. 

Prove the identity

tema7_EN_files\tema7_EN_MathML_101.jpg

Hint: Let the function considered be tema7_EN_files\tema7_EN_MathML_102.jpg.

Example 1.10. Prove the identity tema7_EN_files\tema7_EN_MathML_103.jpg for every a, b, c.

Solution: tema7_EN_files\tema7_EN_MathML_104.jpg

tema7_EN_files\tema7_EN_MathML_105.jpg

When tema7_EN_files\tema7_EN_MathML_106.jpg tema7_EN_files\tema7_EN_MathML_107.jpg

Example 1.11. Prove the identitytema7_EN_files\tema7_EN_MathML_108.jpg for every a, b, c.

Solution: Let tema7_EN_files\tema7_EN_MathML_109.jpg

tema7_EN_files\tema7_EN_MathML_110.jpg.

When tema7_EN_files\tema7_EN_MathML_111.jpg.

Consequently tema7_EN_files\tema7_EN_MathML_112.jpg.

Example 1.12. Prove the identity tema7_EN_files\tema7_EN_MathML_113.jpg.

Hint: Let tema7_EN_files\tema7_EN_MathML_114.jpg.

tema7_EN_files\tema7_EN_MathML_115.jpg

Consequently tema7_EN_files\tema7_EN_MathML_116.jpg. When tema7_EN_files\tema7_EN_MathML_117.jpg

For individual work

Exercise 1.13. Prove the identity tema7_EN_files\tema7_EN_MathML_118.jpg for every x, y.

Exercise 1.14. Prove the identity tema7_EN_files\tema7_EN_MathML_119.jpg for every x,y.

Exercise 1.15. Prove the identitytema7_EN_files\tema7_EN_MathML_120.jpg for every x, y, z.

Exercise 1.16. Prove the identitytema7_EN_files\tema7_EN_MathML_121.jpg for every x, y, z.

Exercise 1.17. Prove the identity tema7_EN_files\tema7_EN_MathML_122.jpgtema7_EN_files\tema7_EN_MathML_123.jpg for every a, b, x, y, z.

Exercise 1.18. Prove the identity tema7_EN_files\tema7_EN_MathML_124.jpg for every a, b, c.

Exercise 1.19. Prove the identity tema7_EN_files\tema7_EN_MathML_125.jpg for every a, b, c.

2  Proving trigonometric identities

The algorithm offered can be used for proving trigonometric identities. It has to be mentioned, though, that the derivatives of differences which result from subtraction of trigonometric expressions, rather than the identities themselves which have to be proven. This means that more complex transformations have to be carried out to prove that tema7_EN_files\tema7_EN_MathML_126.jpg. This is why we will only illustrate this application with a few examples, and the rest will remain to be done individually.

Prove the identities:

Example 2.1. Prove the identity tema7_EN_files\tema7_EN_MathML_127.jpg for every x.

Solution: Let tema7_EN_files\tema7_EN_MathML_128.jpg

tema7_EN_files\tema7_EN_MathML_129.jpg

Then tema7_EN_files\tema7_EN_MathML_130.jpg. When tema7_EN_files\tema7_EN_MathML_131.jpg the result is that tema7_EN_files\tema7_EN_MathML_132.jpg

tema7_EN_files\tema7_EN_MathML_133.jpg. Consequently tema7_EN_files\tema7_EN_MathML_134.jpg

Example 2.2. Prove the identity tema7_EN_files\tema7_EN_MathML_135.jpg for every x.

Solution: Let tema7_EN_files\tema7_EN_MathML_136.jpg

tema7_EN_files\tema7_EN_MathML_137.jpg
tema7_EN_files\tema7_EN_MathML_138.jpg

When tema7_EN_files\tema7_EN_MathML_139.jpg.

Example 2.3. Prove the identity tema7_EN_files\tema7_EN_MathML_140.jpg for every tema7_EN_files\tema7_EN_MathML_141.jpg.

Solution: tema7_EN_files\tema7_EN_MathML_142.jpg

tema7_EN_files\tema7_EN_MathML_143.jpg

Consequently tema7_EN_files\tema7_EN_MathML_144.jpg. When tema7_EN_files\tema7_EN_MathML_145.jpg.

Example 2.4. Prove the identity tema7_EN_files\tema7_EN_MathML_146.jpg for every tema7_EN_files\tema7_EN_MathML_147.jpg.

Solution: Let tema7_EN_files\tema7_EN_MathML_148.jpg.

tema7_EN_files\tema7_EN_MathML_149.jpg
tema7_EN_files\tema7_EN_MathML_150.jpg
tema7_EN_files\tema7_EN_MathML_151.jpg

Consequently tema7_EN_files\tema7_EN_MathML_152.jpg. Whentema7_EN_files\tema7_EN_MathML_153.jpg

Example 2.5. Prove the identity tema7_EN_files\tema7_EN_MathML_154.jpg for every tema7_EN_files\tema7_EN_MathML_155.jpg

Hint: Consider this function: tema7_EN_files\tema7_EN_MathML_156.jpg. Determine that tema7_EN_files\tema7_EN_MathML_157.jpg Establish the constant for tema7_EN_files\tema7_EN_MathML_158.jpg

For trigonometric identities with two or more variables we do the following: we introduce the function tema7_EN_files\tema7_EN_MathML_159.jpg, as a function of one of these variables. The remaining are treated as constants. In this case after finding the first derivative of tema7_EN_files\tema7_EN_MathML_160.jpg, many of the summands cease to play a part since their derivatives are zeros. And though some of the problems require a lot of calculation, they are simpler and easier.

Example 2.6. Prove the identity tema7_EN_files\tema7_EN_MathML_161.jpg for every x.

Solution: We assume that tema7_EN_files\tema7_EN_MathML_162.jpg is a constant and consider the function

tema7_EN_files\tema7_EN_MathML_163.jpg
tema7_EN_files\tema7_EN_MathML_164.jpg
tema7_EN_files\tema7_EN_MathML_165.jpg

Consequently tema7_EN_files\tema7_EN_MathML_166.jpg. Let tema7_EN_files\tema7_EN_MathML_167.jpg. Then tema7_EN_files\tema7_EN_MathML_168.jpg.

Example 2.7. Prove the identity tema7_EN_files\tema7_EN_MathML_169.jpg for every tema7_EN_files\tema7_EN_MathML_170.jpg.

Solution: Let's assume that tema7_EN_files\tema7_EN_MathML_171.jpg is a constant. Then

tema7_EN_files\tema7_EN_MathML_172.jpg
tema7_EN_files\tema7_EN_MathML_173.jpg
tema7_EN_files\tema7_EN_MathML_174.jpg
tema7_EN_files\tema7_EN_MathML_175.jpg

When tema7_EN_files\tema7_EN_MathML_176.jpg, we determine that tema7_EN_files\tema7_EN_MathML_177.jpg.

Example 2.8. Prove the identity tema7_EN_files\tema7_EN_MathML_178.jpg for every tema7_EN_files\tema7_EN_MathML_179.jpg

Solution: tema7_EN_files\tema7_EN_MathML_180.jpg.

tema7_EN_files\tema7_EN_MathML_181.jpg

When tema7_EN_files\tema7_EN_MathML_182.jpg

The basic theorem can be used for proving conditional trigonometric identities.

Example 2.9. Prove the identity tema7_EN_files\tema7_EN_MathML_183.jpg, if tema7_EN_files\tema7_EN_MathML_184.jpg.

Solution: tema7_EN_files\tema7_EN_MathML_185.jpg,

tema7_EN_files\tema7_EN_MathML_186.jpg
tema7_EN_files\tema7_EN_MathML_187.jpg

When tema7_EN_files\tema7_EN_MathML_188.jpg.

Example 2.10. Prove the identity tema7_EN_files\tema7_EN_MathML_189.jpg, if tema7_EN_files\tema7_EN_MathML_190.jpg.

Solution: tema7_EN_files\tema7_EN_MathML_191.jpg

tema7_EN_files\tema7_EN_MathML_192.jpg
tema7_EN_files\tema7_EN_MathML_193.jpg

Whentema7_EN_files\tema7_EN_MathML_194.jpg.

Example 2.11. Prove the identity tema7_EN_files\tema7_EN_MathML_195.jpgif tema7_EN_files\tema7_EN_MathML_196.jpg.

Solution: tema7_EN_files\tema7_EN_MathML_197.jpg

tema7_EN_files\tema7_EN_MathML_198.jpg

When tema7_EN_files\tema7_EN_MathML_199.jpg. Consequentlytema7_EN_files\tema7_EN_MathML_200.jpg.

Example 2.12. Prove the identity tema7_EN_files\tema7_EN_MathML_201.jpg tema7_EN_files\tema7_EN_MathML_202.jpg, if tema7_EN_files\tema7_EN_MathML_203.jpg, tema7_EN_files\tema7_EN_MathML_204.jpg.

Hint: Consider tema7_EN_files\tema7_EN_MathML_205.jpg. Find tema7_EN_files\tema7_EN_MathML_206.jpg and tema7_EN_files\tema7_EN_MathML_207.jpg.

Example 2.13. Prove the identity tema7_EN_files\tema7_EN_MathML_208.jpg, if tema7_EN_files\tema7_EN_MathML_209.jpg.

Hint: Let tema7_EN_files\tema7_EN_MathML_210.jpg

Determine tema7_EN_files\tema7_EN_MathML_211.jpg and find tema7_EN_files\tema7_EN_MathML_212.jpg whentema7_EN_files\tema7_EN_MathML_213.jpg.

For individual work

Prove the following identities:

Problem 2.14.  tema7_EN_files\tema7_EN_MathML_214.jpg for every tema7_EN_files\tema7_EN_MathML_215.jpg

Problem 2.15.  tema7_EN_files\tema7_EN_MathML_216.jpgfor every tema7_EN_files\tema7_EN_MathML_217.jpg

Problem 2.16.  tema7_EN_files\tema7_EN_MathML_218.jpg

Problem 2.17.  tema7_EN_files\tema7_EN_MathML_219.jpg

Problem 2.18.  tema7_EN_files\tema7_EN_MathML_220.jpg

Problem 2.19.  tema7_EN_files\tema7_EN_MathML_221.jpg

Problem 2.20.  tema7_EN_files\tema7_EN_MathML_222.jpg

Problem 2.21.  tema7_EN_files\tema7_EN_MathML_223.jpg

Problem 2.22.  tema7_EN_files\tema7_EN_MathML_224.jpg

Problem 2.23.  tema7_EN_files\tema7_EN_MathML_225.jpg, if tema7_EN_files\tema7_EN_MathML_226.jpg

Problem 2.24.  tema7_EN_files\tema7_EN_MathML_227.jpg, if tema7_EN_files\tema7_EN_MathML_228.jpg

Problem 2.25.  tema7_EN_files\tema7_EN_MathML_229.jpg, if tema7_EN_files\tema7_EN_MathML_230.jpg

Problem 2.26.  tema7_EN_files\tema7_EN_MathML_231.jpg, if tema7_EN_files\tema7_EN_MathML_232.jpg.

By Ilia Makrelov, Plovdiv university, ilmak@uni-plovdiv.bg